Primrose Docs
  • Home
    • ⛓️Blockchain
      • Avalanche
        • What is AVAX?
      • Ethereum
        • Ethereum Cancun Upgrade Explained(draft)
        • go-ethereum: gas estimate
        • Blockchain Transaction Lifecycle
        • Mempool
        • Gas optimization in Solidity, Ethereum
      • Solidity DeepDive
        • Meta transaction
        • solidity: patterns
        • UUPS vs Transparent
        • Solidity Interface
        • Smart contract storage
        • ERC-2981 Contract
        • Solidity modifier
        • Solidity delete keyword
        • How To Make NFTs with On-Chain Metadata - Hardhat and JavaScript
        • How to Build "Buy Me a Coffee" DeFi dapp
        • How to Develop an NFT Smart Contract (ERC 721) with Alchemy
        • Upgradeable Contract
        • Smart Contract Verification
      • Common
        • Eigenlayer
        • MultiSig(draft)
        • Chain-Based Proof-of- Stake, BFT-Style Proof-of-Stake
        • Byzantine Fault Tolerance
        • Zero-knowledge
        • Hierarchical Deterministic Wallet
        • Maker DAO
        • Defi
        • Uniswap
        • IBC
        • Cosmos
        • Gossip Protocol
        • Tendermint
        • UTXO vs Account
        • Blockchain Layer
        • Consensus Algorithm
        • How does mining work?
        • Immutable Ledger
        • SHA256 Hash
        • Filecoin
        • IPFS - InterPlanetary File System
        • IPFS와 파일코인
        • Livepeer
        • Layer 0
      • Bitcoin
        • BIP for HD Wallet
        • P2WPKH
        • Segwit vs Native Segwit
    • 📖Languages
      • Javascript/Typescript
        • Hoisting
        • This value in Javascript
        • Execution Context
        • About Javscript
        • tsconfig.json
        • Nest js Provider
        • 'return await promise' vs 'return promise'
      • Python
        • Pythonic
        • Python: Iterable, Iterator
        • Uvicorn & Gunicorn
        • WSGI, ASGI
        • Python docstring
        • Decorator in Python
        • Namespace in Python
        • Python Method
      • Go
        • GORM+MySQL Connection Pool
        • Context in golang
        • How to sign Ethereum EIP-1559 transactions using AWS KMS
        • Mongo DB in golang(draft)
        • Golang HTTP Package
        • Panic
        • Golang new/make
        • golang container package
        • errgroup in golang
        • Generic Programming in Golang
        • Goroutine(draft)
    • 📝Database
      • MongoDB in golang
      • Nested loop join, Hash join
      • DB Query plan
      • Index
      • Optimistic Lock Pessimistic Lock
    • 💻Computer Science
      • N+1 query in go
      • Web server 를 구성할 때 Thread, Process 개수를 어떻게 정할 것인가?
      • CAP
      • Socket programming
      • DNS, IP
      • URL, URI
      • TLS과 SSL
      • Caching(draft)
      • Building Microservices: Micro Service 5 Deploy Principle
      • Red Black Tree
      • AOP
      • Distributed Lock
      • VPC
      • Docker
      • All about Session and JWT
      • Closure
      • Singleton Pattern
      • TCP 3 way handshake & 4 way handshake
      • Race Condition
      • Process Address Space 
      • Call by value, Call by reference, Call by assignment
      • Zookeeper, ETCD
      • URL Shortening
      • Raft consensus
      • Sharding, Partitioning
    • 📒ETC
      • K8S SIGTERM
      • SQS
      • Git Branch Strategy: Ship / Show / Ask
      • Kafka
      • Redis Data Types
      • CI/CD
      • How does Google design APIs?
      • Minishell (42 cursus)
      • Coroutine & Subroutine
      • Redis
Powered by GitBook
On this page
  • All sources are from [Blockchain A-Z in Udemy]
  • How does mining work ?
  1. Home
  2. Blockchain
  3. Common

How does mining work?

All sources are from [Blockchain A-Z in Udemy]

How does mining work ?

What is mining? What is this competition that everyone wants to participate in?

A blockchain is a chain consisting of blocks, and there are several fields in the block.

Remember that a block can store multiple transactions. Multiple transactions can be stored in one block and this block can move to the next.

In addition to transactions, blocks have a previous hash field, which is a very important feature of the blockchain, and becomes a method of activating encryption links between blocks.

Now it's time to look at the new fields in the block.

Field is called nonce and refers to a number that is used only once. This is the most important field in mining. Everyone is just working on changing this field.

What determines the hash in a block is the data in the block, such as block number, nonce, data, and previous hash.

Since nonce can be changed freely, the hash value can be adjusted by changing nonce.

Suppose there is a hash pool. This hash pool contains all the hash from the smallest to the largest.

The mining method is basically a blockchain system or algorithm setting the target.

In other words, there is a target set by miners to achieve a specific hash.

At this time, a hash larger than the target is not considered.

So the miners are constantly changing the nonce value that I mentioned earlier and continuously looking for a hash that can be included under the target.

Of course, there is a more complicated process, but let's just understand it this much first.

PreviousConsensus AlgorithmNextImmutable Ledger

Last updated 1 year ago

⛓️